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DIRECT-NUMERICAL AND LARGE-EDDY SIMULATIONS OF A NON-EQUILIBRIUM

TURBULENT KOLMOGOROV FLOW*

S.L. WOODRUFF t, .I.V. SIIEBALIN :t, AND M.Y. HUSSAINI_

Abstract. A non-equilibrium h)rm of turbulent Kohnogorov flow is set ut) by making an instantaneous

change in the amplitude of the spatially-periodic forcing. It is found that the rest)onse of the flow to

this instantaneous change ]lecomes more dramatic as the wavenumber of the flirting is increased, and, at the

same time, that the faithflllness with whi(:h tile large-eddy-simulation results agree with the direct-nunlerical

results decreases.

Key words, turbulent:e, modeling, large-eddy simulation

Subject classification. Fluid Mechanics

1. Introduction. How, and I).v how much, one must modify present steady-state sut)-gri(t m(idels in

order to llerfornl large-ed(ty simulations of non-equilibrium turbulent flows is vet" 3" much an ellen question.

The ever-gr(lwing eomt)utational resources at our disposal provide the optiortunity for apt)lying large-eddy

simulations to non-equilil)rium as well as other increasingly-eomtilcx flows, but there is no guarantee that the

sut)-gri(t m(/dels currently ill use will tie u t) to the task of adequately rel)resenting the effect of the sub-grid

scales on die resolved flow. In the (:ase of the non-equilibriunl flows of interest here, for which the statistical

state of the tm'ltulen(:( _ varies with time, there is clearly a faihn'e of a steady-state model one which l)ases

its i)rediction of the Reynohts stress (m the (:urrent, instantaneous, resolved veh)eity fieht to reflect the

finite time lag inherent in the reaction of the actual sub-grid dynamics to teml)oral (:hanges in the resolved

fiehl. The extent t(/ which this effect actually affe(:ts the large-eddy simulation resuhs is another question,

and clearly one strongly influenced by the ralti(lity of the res(tlved-fieht variations. The l)resent investigation

seeks t(/answer this question for one simt)le flow.

The choice of a turbulent flow to use in the study of this question is not a trivial one. given (nlr desire

to work with a flow whose (:()inl)utati(tn does llOt require too lIlllch (:oillltuter time, wtl(tS( _ uunlori('al analysis

does not re(tuire espeeially-sol)histicated numerical techniques and whose t)hysics l)ears th(, closeset t)ossibh,

relationshil) to turt)ulent flows of real technological interest. Homogeneous, isotropic, tur|)ulen('e is the

simplest choice, trot the at)l)li(:ability of results for this flow to real flows is ttroblematic, at best. Hom(lg(qle()us

shear flow is a t)ossillility, but the additional eonq)lexity of the numerical techni(lues required t(/deal with

the cumulative shearing (i.e.. regridding, [8, 2, 9, 11]) make it an unappealing one. Sinmlations of oven the

strut)lest of those turludent flows realizable in tile laboratory, such as channel fl(lw, are t)oth eomt)utationall.v

intensive and re(tuire Sl)ecial attention near walls, both to the mmmrics and to the modelling.

Sh(_balin and Woodruff [14] have adv(l('ated the study of turbulent Kohn(tgorov flow as a way to learn

about tm'hulent shear flows without the ex('essive numeri(:al (tiflci('ulties and (:omttutational expense of the

flows referred to Mlove. This flow, in which fluid in an infinite domain is driven by a I)eriodi(' body force.

*'l'his research was SUl)p()rled by tt_e Nalional A(q'onauli('s anti St)a(:c ,\dminist rat ion under NASA (!(mlrac! Nt). NAS1-

19.180 while the first anti third authors were in residen(:e at the [nstittHe for (:omput,q" Appli('ations in Science and Engineerin+4

(I(:ASE), NASA l,angh'y tlesearch (:cnt(q', [|ampton, VA 23681-2199.

t S('h(_[)l of (!(mlputati(mal S('i(,n('_, and lnformatiml "[i_('tm_)logy. H()rida Stale University. Tallahasso(,, H. 32306-.1120

_tAer(Jdynami(' and Acoustic Mctho(ts l+h+an(:h. NASA l+at_g;le5- Research (_enter, llamlm)n. VA 23681-2199: curr(,ntly al

.h)hnson Space Flight (lent(,r

hS(:ho(d (>f ('omputalional Science and hfformalion Techn<>h)gy, I:h_ri(ta State [Iniversity, Tallahassee. Fl+ 3231)6-112(I



was proposed by Kolmogorov as a model problem for the study of stability issues, and a significant body

of literature addresses the stability aspects of this flow (see, for example, [16], and the references therein).

Additionally, there has been some work in the numerical simulation of turbulent Kolmogorov flow in two

dimensions [13, 12] and in three dhnensions [14].

hi addition to the computational and numerical advantages afforded by the Kolmogorov flow, it has

a further advantage for the testing of turt)ulence models in that there is the potential for allowing many

different turbulent riow features to be studied, due to the freedom to choose the body force as one pleases.

In the present work, use is made of this freedonl to investigate tile response of the flow to instantaneous

changes in tile amplitude of the forcing at different shear magnitudes.

A nulnber of approaches have been proposed for tile development of time-dependent models for non-

equilibrium flows. Yakhot and Smith [15] presented a time-dependent eddy viscosity for k-e models; a more

general expression of the idea behind this model provided the basis for the stress-relaxation model of Yakhot

et al. [18]. The two-scale Direct hlteraction Approximation approach to the development of turbulence

models propose(| by Yoshizawa [20] was employed by Yoshizawa and Nisizima [21] to derive a tinle-dependent

model; Rubinstein [10] also used Kraichnan's DIA [4], to motivate time-evohltion equations for the Reynolds

stresses. The general approach t.o developing turbulence models examined in [17], based on the fundamental

idea behind Yoshizawa's work, was used to derive a history-integral model for non-equilibrium turbulent

flows, independently of any time-scale-separation assumptions. Two simplified versions of this model were

tested nunlerically in large-eddy silnulations of plane-channel flow by Nwafor and Woodruff [6]; the 3, found

that the large-eddy simulations with the Sulagorinsky model did in fact fail to reproduce the DNS results,

and tile new inodels did improve the results ill several respects.

Reported ill this paper are results of a colnparison test for Kolmogorov flow similar to that of Nwafor

and Woodruff. Simulations for Kolmogorov flows with st)atially-sinusoidal forcing at three different wave

numbers are set up and run until a steady state is reached; then the forcing amplitude is doubled and the

relaxation of the flow to a new steady state is examined. These three non-equilibrium turbulent Kolmogorov

flows were solved by direct numerical simulation and large-eddy simulation with the plane-averaged history-

integral model (a simplifie(1 model proposed in [6]), with tile dynamic sug-grid scale model [7] and with tile

Smagorinsky model using two values of tile Smagorinsky constant: one consistent with the predictions of the

history-integral model (Ch) and the other consistent with the predictions of the dynamic model (Cd). (The

latter is different for the three values of forcing wave number, the former is not.)

In ('ontrast to the findings of [6], it was found that there was little difference lletween the results of the

LES with tile new model and those of the LES with tile Smagorinsky model employing Ch. What differences

there were increased as the wavenumber of the fl)rcing increased. Tile LES ret)roduced the DNS results fairly

well at tile lowest wave-number forcing, but became progressively worse as the wave number of the forcing

increased. The dynamic model was an improvement over the Smagorinsky model with Ch and the history-

integral model at the higher-wave-number forcings, but it, too, exhibited discrepancies when compared with

the DNS. The Smagorinsky model with Ca (lid nearly as well as the dynamic model, indicating that the

primary advantage of the (lynamic model in this application is its autonmtic initial determination of tile

Smagorinsky constant; once the constant has been determined near the beginning of the sinmlation, there

seems to t)e little advantage gained from the dynamical model's ability to further modify the constant in

time or st)ace.

The st)ecifics of the physical l)roblem to be solved are given in the following section. Section 3 gives

information about tile models emt)loyed in the large-eddy simulations and Section 4 is concerned with



numerical details, in particular, details of the implementation of tile new model. The results are described

in Section 5 and the implications of these results for the modelling of non-equilibrium turbulent flows arc
discussed in Section 6.

2. Description of the Flow and Its Properties. The Kolmogorov flow to be considered in this work

is contained within a t)eriodic box whose sides are of length 277. Energy is input by an external, artificial,

deterministi(:, body force which is introduced into the equations on the right-hand side. We use a Cartesian

coordinate system, with axes x, y and z.

The external forces to be used throughout this work involve a single non-zero component in the x direction

which (h_t)en(ls only on tim z coordinate. As a result, the flows to be examined are parallel, as are Couette

and Poiseuille flow, in the sense that tile mean motion is in one direction attd varies in a perpendicular

direction. The flow eorrest)onds to Kolmogorov flow if tile non-zero component of the force is sinusoidal in c

and we shall here consider only sinusoidal forcing at various wavenumbers. We are thus interested in solving

the Navier-Stokes equations with a force of tile form f =/_7_"(_ sin kj-z 7 inserted on the rigilt-han(t side. The

charaet(_risti(' velo(:ity _'0 and the forcing wavenuml)er k/ may t)e use(t to nondimensionalize th(, equations
of motion:

(2.1) Du 1 .,
Dt - -Vp + _V-u + sin z i';

the Reynolds numi)er Rc is Co�kip.

In addition to the l)arallel nature of tile flow, we may conclude fl'om the fact that nothing det)ends on

the y coordinate that the flow properties must not vat- 5- under an inversion of the y coordinate (y --,, -y;

the origin is at the midplane of the box.) This implies, for example, that all Reynohls averages involving

the y comt)onent of veh)citv must be zero. The only nonzero off-diagonal term of the Reynolds stress tensor

is thus tile < ¢_w > t ernt, and consequently this term is the one which t)roduces energy for the turbulent

veh)city fiehl.

3. Description of the Models. In this section, we briefly review the reasoning behind the Smagorin-

sky model, examine the issue of whether a time-del)en(tent model is necessary for large-eddy simulations of

non-e(luilibrimn turbulent flows, and review the derivations of the history-integral model [5] and the plane-

averaged history-integral model [6], a simplifi(:ation which allows us to ineorl)orate the history integral into

a calculation in a (:omputationally-feasible manner. Finally, we descril)e the application of the dynami("
sub-grid scale model to this flow.

The well-known Smagorinsky model may be motivated by an at)peal to the isotropy of the nlo(teled

subgrid scales, which lea(Is to the forln

(3.1) Rij = 2-kgij + _',,S_j;
• 3

t" being the kinetic energy of the subgri(l scales, 14 the turbulent eddy viscosity and Sij the rate-of-strain

tensor of the resolved velocity iiel(l U,:

1 (OUi OUj'_
s,j = + o.,,,]

One then has to determine the form of the eddy viscosity, l,,,, and dimensional analysis tells us that once

we have (:hosen to assume that th(, modeled sul)grid scales del)end only on tit(, dissil)ation rate (following

Kolmogorov's analysis /3]) Ill(, eddy viscosity must have the form r,, = eonst, e e/a. The dissit)ation rate for

the subgrid scales is determme(t by assuming that the energy balance fi_r the subgri(I scales is dominated I).v



the local production RijSij and the local dissipation e. If this assumption is valid, then the kinetic energy

equation for the subgrid scales reduces to a statement of the equal!tY of the local production and the local

dissipation. This relation may be used along with the Smagorinsky model itself (3.1) to eliminate e, giving

all expression in terms of the rate-of-strain tensor only:

(3.3) Rij : _:(_ij -_- (Cs/k)2(SmnSn, n)l/2sij
3

Here _ is a length scale characterizing the grid size employed in the calculation and the constant is determined

empirically by fitting with experinmnts or direct-numerical simulation data; its value is typically taken to be

0.1.

The crucial point about tim Smagorinsky model for the present discussion is that it is based on scale-

separation assumptions, both in space and in time. Gradient-transport models in general result froln scale-

separation assumptions: for example, the Newtonian-fluid viscous-stress relation is derived in the Chapman-

Enskog fornmlation by taking advantage of the large separation in scales between the continuous fluid motion

and the discrete molecular motion. Formal derivations of the Smagorinsky model also employ such a scale

assuml)tion (see, for examt)le, [20, 17]).

Since there is in turbulence no spectral gap - a range of scales between the largest and the smallest in

which the energy is neglegible the scale-separation assumption is flmdamentally not valid and we have to

ask whether it should be removed. Certainly the success of the Sinagorinsky model in simulations of many

different types of flows suggests that it at least provides a useful formula, independently of the invalidity

of the scale-separation assumption. The question of concern is really whether or not there are flows which

are simulated better t)y a model which does not embody this scale separation assumption thei_ they are

simulated by the Smagorinsky model.

A model which removes the temporal scale-separation assumt)tion has been derived by Woodruff [17],

and has been applied to the Ilon-equilibrium turlmlent flow problenl of accelerated plane-channel flow by

Nwafor and Woodruff [6]. There it was found that there are in fact significant features of that flow which

compare better with direct numerical simulatioins when simulated with the new model than when simulated

with the Smagorinsky lndoel. Thus, there is some evidence that, fi'om a purely practical standpoint, there

arc situations for which a tilne-dependent inodel does improve the results of large-eddy simulations of non-

e¢luilibrium turbulent flows. In the present paper, we exanfine whether this is true for Kohnogorov flow.

The time-dependent model used in the present investigation was derived in [17], by employing a fairlv

general techxfique for the derivation of turbulence models using ideas froxn the analytical theory of turbulence.

The fundamental idea behind the approach goes back to Yoshizawa [20] and even filrther to Crow [1] and is a

sort. of rheological approach to turbulence wherein one separates the motion into the modeled portion and the

resolved portion and treats those portions as distinct entities. A solution is derived for the modeled portion

which involves functions characterizing the resolved portion; this solution may be used to give expressions for

the modeled contributions to the resolved portions of the flow. Specifically, for the modelling of turbulence

we divide the flow into the resolved portion and the subgrid, modeled, t)ortion and derive a perturbative

solution for the subgrid velocities, substitute that perturbative solution into the definition of the Reynolds

stress and so derive an expression for the Reynolds stress which may be inserted into the Reynolds-averaged

equations (or, in the ease of lm'ge-eddy simulations, the filtered equations). The particular approximat_e

solution for the subgrid velocities used in [17] was based on the assumption that if the commonly held

assumptions about the universality of t.urtmlenee at the snmll scales are valid, we can approximate the sub-

grid scale velocities in terms of a doufinant part which is the contribution to the velocity from the universal



componentanddepends(accordingto theassumptionofuniversality)onlyoilasmallnumberof descriptors
of tile resolvedflow,suchastiledissipationrate.Correctionsto thisdominanttermarisefrommorespecific
detailsoftile resolvedflow,suchastherate-of-straintensor.Thus,wehavewhatisessentiallyanexpansion
in themagnitudeof therateof strain.Thetermsin thisexpansionmayin principlebecomputed by any

means that is available and convenient, using tile theory of turbulence, or even using numerical or laboratorY-

experiments. The models developed in the examples of Woodruff [17] were derived on the basis of turbulent(,

approximations derivable fi'om the Direct Interaction Aproximation of Kraichnan [4]. The one employed in

the present numerical calculations, as well as the calculations of Nwafor and Woodruff [6], is based on the

e-expansion renormalization-group results of Yakhot and Orszag [19J. In fact, any specific theory used to

make a computation along these lines would lead to a history-integral model of the type discussed below.

the only differences would be in the details of the kernal function and it. is likely that these differences wouhi

not affect the results of a tubulence model cah:ulation drastically. The reader is referred to [17J for details
of this derivation.

It is hell)tiff in understanding the assumptions underlying this new model t.o sketch a more intuitive

derivation. In this derivation, we lnake several assumptions and then ask what is the most general form an

expression for the Reynolds stress may take consistent with those assumptions. Tile assumt)tions are that the

Reynohls stress is linear in the strain rate, that the model is isotropic and and that the ulodel is, spatially, a

gradient transport model. The consequences of these three assumptions are that the proposed model must

t)e i(tentical in form to the Smagorinsky model, as far as the spatial (tel)en(len(.e goes. The difference lies in

the teml)oral dependence, which may be represented without loss of generality as a linear integral operator:

(3.4) Ro(t) = gk6i_ + If(t, s) So(s ) ds;

for clarity, we have shown explicitly only the time (lel)endence of Rij and Sij.

The kernal IC(t, s) is determined t)2, the analysis of [17J in terms of the rest)onse flmction and correlation

flmction of the modeled sul)grid velocity field and the ext)ressions (lerived there will t)e use(t in the calculations

to follow. [t is, however, possible to argue from dimensional considerations that the kernal has the form

(3.5) If(t, .s) = r,7'-'k_72F t - ,s

where k(. is the wavenumber of the smallest resolve(t eddies in the numerical calculation all(l r,. is the

corresponding eddy turn-over time. It is natural to expect that more recent history is more important than

less recent history, so the non-dimensional fimction F should be a monotonically (lecreasing fimction of its

argument. The analysis of [17] gives

)c _') _')-
(3.6) F(.r) = x dz • z -c -" = _,-'-'_ + 2a:Ei(-2x),

I

and this expression will be used in tile present calculations.

If the history-integral model were simplified on the basis of a scale-separatioil assuml)tion in time, it

would re(hw(, to the Smagorinsky model as a sort of steady-state limit. (That is, the rate-of-strain tensor

is assum(,d to be essemially constant as far as the evaluation (If the history-integral is (:oncerne(t.) This

calculation was t)erfi)rmed in [17], where the pre(ti('t(,d value of the Smagorinsky constant was found t() be

quite ch)se to the value traditionally used in chatmel flows.

The (:omfmtations required to actually compute this history-integral expression for the Ileynol(ls stress

in the comse of a munerical (:ah'ulation would t)e quit(, extensive, and certainly prohibitive for a t)ractical



calculation.Forthisreason,wechooseto takeadvantageofthehomogeneityof theKohnogorovflowunder
considerationherein thex and y directions to consider the possibility that most of the history effects may

be captured by considering only the time history of the rate-of-strain tensor averaged over x - y planes.

This approach was also employed in the plane-channel calculations of Nwafor and Woodruff [6]. Such a

plane-averaged approach may not be implemented rigorously, because it is not possible to rewrite equation

(3.4) in terms of only plane-averaged quantities without breaking up some averages of products of quantities

into products of averages. Once this is agreed to, however, and once the basic Smagorinsky model is added

and subtracted from the history-integral model, the plane-averaged form of the history-integral model may

be written

[/0(3.7) Rij - _k[isj ,., u(t)Sij + dt' Kp(t - t') < Sij(t') >p - < u(t) >i,< Sij >p

(The notation < • >p indicates plane averaging and the subscript on the kernal indicates that the kernal

is computed using the plane-averaged dissipation rate.) This expression has been specifcally constructed

so as to be the basic Smagorinsky model plus a history-integral correction term, to aid in the numerical

implementation of the model. The implementation will be sketched in tile following section.

The dynamic sub-grid scale lnodel is implemented following [7]. A test filter is defined which filters the

resolved velocity field such that the smallest resolved length and time scales are eliininated. One then seeks a

value for the Smagorinsky constant which yields the same values for the modeled Reynolds stress from both

the resolved velocity field and the test-filtered velocity field. Given that there are six independent components

of the stress tensor and but one Smagorinsky constant, this requirement leads to an overdetermined system

of equations; of the several approaches to finding the "best" wdue for tile Smagorillsky constant under these

constraints [7], that proposed by Lilly [5], where the square of the residual error is minimized, is employed

here. Additionally, as is conunon in this sort of parallel-flow shear-layer problem, the computation of the

Smagorinsky model is performed with quantities averaged over x - y planes in order to ensure numerical

stability.

4. Numerical Considerations. The DNS code used in the present work is that of Shebalin and

Woodruff [14]. The code is spectral with Fourier modes in all three spatial directions and incorporates

the viscous term implicitly in time-stepping based on a predictor-corrector algorithm. The nonlinear terms

are handled by fast-Fourier transforming back into physical space, multiplying and then transforming into

Fourier space. It was found that a resolution of 64:3 was sufficient for an accurately-resolved solution for the

parameters employed in this study.

In order to perforln large-eddy simulations of the Kohnogorov flow, subroutines were added to the DNS

code which compute the Reynolds stress based on the Sinagorinsky model, the dynamic inodel and the

plane-averaged history integral model. For tile runs described here, tile original time-stepping of the DNS

code was retained, where only the (molecular) viscous terms are treated implicitly; the entire Reynokls stress

term is treated explicitly. Some experimentation was done with a tinm-stepping algorithm incorporating the

eddy viscosity averaged over x - y planes into the implicit part of the computation, but the second-order

differences employed in the z direction in this altered algorithm were found to degrade the accuracy of the

calculation over long times at higher values of shear and this algorithm was abandoned.

The Reynolds stress for the Smagorinsky model is comtmted by calculating the rate-of-strain tensor for

the resolved velocity field and then comlmting the Smagorinsky at)proximation for the stress according to

(3.3). The dynamic model is computed similarly, with the addition of the computation of the Smagorinsky

constant itself.



Implementation of the plane-averaged history integral model is of course more complex, since it is

necessary to store the history of tile rate-of-strain tensor and compute its integral. As described in Section

3, we imt)lement the plane-averaged history integral model by inserting it as a correction factor to the

Smagorinsky model so the routines described above for the Smagorinsky model remain intact. In addition,

we add routines to cah:ulate the plane-averaged rate of strain tensor, the kernal of tilt, history integral and the

history integral itself. The dissipation for use in the computation of the history integral klrnal is computed

according to the local production local dissipation equivalence discussed ill Section 3.

5. Results. We present results for the response of the Kolmogorov flow to all instantaneous change in

the amplitud(_ of the forcing at three different wave nmnt)ers. In each case, four runs were made: a direct

numerical simulation, a large-eddy simulation with the Smagorinsky model with a value for the Smagorinsky

constant consistent with that t)redieted by the history-integral model (C1_), a large-eddy simulation with

the plane-averaged histor.v-integral model, a large-eddy simulation with the dynamic model and. finally, a

large-eddy simulation with the Smagorinsky model employing a value fl)r the constant (Cd) consistent _'ith

tilat t)redicted l)y the dynamic model for each case. The direct-munerical simulations were 1)erfornle(t with

a resolution of 64 :_ and tile large-eddy sinmlations were t)erformed with a resolution of 32 :_.

Tile reason for two set)arate SInagorinsky-model simulations at each of the forcing wave mHnbers is our

desire to make the truest i)ossil)le comi)arison between tile Smagorinsky model and the two more Sol)histi(:ated

models considered. Thus, the history-integral-model sinmlation is most at)I)ropriately c()nlpared with a

Smagorinsky-model simulation performed with a Smagorinsky constant e(lual to that attained l)y the history-

integral model ill the steady-state limit. Similarly, in view of tile circumstan(:e thai the Smagorinsky constailt

predicted by the dynamic model varies little in time, it is most at)prot)riate to corot)are the (lynanli('-model

predictions with those of the Smagorinsky model using a value for the Smagorinsky constant fitted as best

one can to the time-history of the Smagorinsky constant generated by the dynamic model. Tills ambivalent(,

in the Smagorinsky model, with its art)itrary constant, is, of course, one of its more signifi(!ant weakuesses,

and the fact ('annot be ignored that it was by using the results of the dynamic-nlodel ('ah'ulation that an

al)t)rot)riate value of the Smagorinsky model was determined without the expensive trial-and-error searching

of t)arameter space that would otherwise be necessary.

Ill attempting to corot)are turbulent(, simulations of different tyt)es with different resolutions, it is ne('-

essary to choose a method of making all simulations start at the same state. This initial state should not l)e

too far in advance of the ste l) change ill forcing amplitude whose response we want to look at. given the in-

evitable (teviations of tile large-edd.v sinmlations from the direct-numerical simulations even for steady-state

turbulen('e, and yet, if we take a 32 :_ velocity field from the large-eddy sinmlations and use it to start tiw

64 :_ dire('t numerical simulations (or vice versa), there is bound to t)e some period of adjustment whil(, the

velot:ity field orients itself to the new resolution. Both starting the DNS with LES data an(t starting the

LES with DNS data was tried in the course of this work and it was found that the DNS started with LES

data continued the steady state with ahnost no discernible adjustment t)eriod, but the LES starte(l with the

DNS data experienced an ahnost 20_, dro I) in turl)ulent kinetic energy as soon as the simulation began. As

a result of these tests, all comt)arisons rel)orte d in this paper were made t)y attaining a st(,adv slat(, with

the LES code and using the velocity field from this run as the initial state for both LES and DNS runs.

The data to t)e examined in comparing the runs are glot)al quantities of the flow: the kineti(' energy, th(,

dissipation (resolved an(l subgrid, in the case of the large-eddy simulations) and the work done bv the for('e

on the fluid. The three elements of the overall energy balance are the kinetic energy, k = 1/2 .ti)ox(_/-' + v" +
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FIG. 5.1. Case 1: Energy k versus time. DNS, thin solid line; Srnagorinsky LES with history-integral-model constant,

dashed line; history-integral LES, dash-dot line; Smagorinsky LES withr eortstant generated by dynamic model, thick solid line;

dynamic-model LES, dotted line.
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FIG. 5.2. Case 1: Work done by external force versus time. Line types as in Figure 5. I.

u.,2)dx, the dissipation, e. an(] the work done t)y the force, w/ = Re-'k).f(_= < 'u >p sin(k/z) dz:

dk

(5.1) d_ wl - _"

In the case of the large-eddy simulations, both the dissipation of the resoh'ed-scale motion and the dissipation

of the sub-grid scales (computed in the course of computing the modeled Reynolds stresses) will be examined.

In Case 1, the forcing wave number is k/ = 1 and the initial turbulent state corresponds to Re = 28.2.

Doubling the amplitude corresponded to changing the Reynolds mmlber to R = 39.9, and it may be seen

from Figures 5.1 5.4 that the time histories of the observed global quantities are affected fairly gradually by
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FI(;. 5.3. (:ase 1: 5"uper-grtd dissipation versus time. Line types as in l,'igur't ,5.1.
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l:I(;. 5.1. (;ase 1: Sub-grid dissipation versus t,mte. Line types as in /"_guvc 5./.

the abrupt change in h)rcing. (The exception is the work done, which .iumps simply because it is computed

directly fl'om the fl)r('e.) All the LES runs follow the DNS results fairly closely until t _ 6 or 7, after which

the runs with the dynamic model and with the Smagorinsky mo(lel with the constant suggeste(l hy the

dynami('-mo(h,l run contimm to r(,t)resent the DNS results tolerably well. t)ut the history-integral model and

the Smagorinsky run with Ch deviat(, significantly fi'om the DNS results.

In Case 2, the forcing wave [mml)er is k/ = 4 and the initial and final R('yn()l(ls numl)(,rs are R_ = 28.0

and Re = 39.6. In this case. the response of the measured global quazlt.iti(,s (Figures 5.5 5.8) is more ahrupt:

there is a rapid rise in most of the plotted quantities when the forcing is changed. W(, begin to see more

serious dis('r(,pan('ies between the LES and DNS runs, and the discr('l)ancios appear earlier. For example,
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FIG. 5.5. Case 2: Energy k versus time. Line types as in Figur_: 5.1.
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FIG. 5.6. Case 2: Work done by external.force versus time. Line types as in Figure 5.1.

the history-integral-model run and tile associated Smagorinsky-model run fail to attain the l)roper level of

kinetic energy very early in the run. The dynami('-model run and its associated Smagorinsky run do correctly

1)re(lict the initial peak in the kinetic energy, but begin to deviate from the DNS results fairly soon afterward.

The other plotted quantities show similar deviations.

Case 3 is for a wave number k I = 6. The initial and final Reynolds numbers are Re = 28.1 and Re = 39.7.

Figures 5.9 5.12 show that the deviations noted in Case 2 t)ecome even more l)ronounced in this case: the

history-integral-model run and its associated Smagorinsky run underestimate the kinetic energy throughout

the run; the (tynamie-model run and its associated Smagorinsky-model run overestimate the kinetic energy

for most of the run, overshooting the initial peak significantly, as well.

10



[_'I('..5.7. Ca._;_:2: ._;upe!v-grid dis._'ipat,ion _cr'sus lime. Line types as i1_ Figure 5.1.
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FI(;. 5.8. ('ase 2: Sub-grid dissipation versus time:. Lint_ typt_,_ as in t,'igurt_ 5.1.

These results iIl(ticat(, strongly that tim t)lane-average(t history-integral model t)rovi(les no significant

improvement over the Smagorinsky mo(l(,l for this problem. The dynami(, n11)(](,l does ])r(,(ti('t tho tim(, his-

tories of global quantities Stlz(lied h(,r(, signifi('antly herr(q- than the history-integral Ino(l(,1 and its associated

Smagorinsky mo(t(_l, but significant deviations fl'om the (lir(_(:t-numeri(:a] simlllations are still l)resent, t)ar-

ti(rularly for the high(_r-wav(,numl)(_r fi)rcing. However. the Smagorinsky-mo(le] run whos(, constant was fix(,(]

at the (lynazni(t-mod(d level did nearly as well: this would seem to in(licat(, that tim strength of tim dynamic

mo(l(,l for this l)Z'ot)l(,m is its ability to automatically (:boos(, a good value fi)z the Snlagorinsky (:onstant,

rather thalt its ability to a(:(:oul()(lat(, spatial and temporal variations in that "('onstant.'"

II
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Fie:. 5.9. Case 3: Enelyy k versus time. Line types as in Figure 5.1.
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Fie;. 5.10. Case 3: Work done by ezlernal force versus time. Line type,s as in Figure 5.1.

6. Conclusion. The purpose of this final section is to make some progress towards understanding

the results of tile previous section and their consequen(:es for the large-eddy simulation of non-equilibrium

turbulent flows. Contrasts with the analogous investigation of Nwafor and Woodruff [6] for accelerated plane

channel flow will also be discussed.

\_,_ are (:oncerned with two basic questions. The more fun(tamental question is the extent to which, and

under what conditions, a steady-stage model like the Smagorinsky model breaks down for non-equilibrium

turbulent flows. The secondary question is whether or not the time-dependent history-integral mo(lel pro-

posed in [6] represents any improvement over the Smagorinsky model.

Consi(lering these questions in turn, it is clear from the results of the previous section that the agreement

12
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FIG. 5.1 1. Cas(_ 3: Super-grid dissipation vers_ts time. Line types as in Fiy_r'e 5.1.
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FI(:. 5.12. Case 2: Sub-grid dissipation _er',su.s time. Line types as iTt l"ig_trc 5.1.

1)etween LES and DNS deteriorates as the wavenumber of the forcing increases. It also seems fair to) assert

that even in the eas(, of the best aglpelilent })etvceen LES and DNS, that of Case 1. with k/ -- 1, quantities

based on the mean velocities, such as the bulk velocities, the work and the overall kinetic energy, at'('

simulated more accm'ately by the LES than are quantities determined by the fluctuating velot'ity field, such

as the dissipatioll. The present results thus suggest that the steady-state Smagorinsky model becomes h, ss

satisfactory for simulating non-equilibrium turbulent flows as the gradients in the flow become larger (a

criterion we shall at.telllpt to make more precise below) alia as one's interests are concentrated on higher-

ol'der iilOlllelltS of [,lie flow.

It is also ('lear that the plane-averaged history-integral model exhibits no improvement over the Smagorin-

13



TABLE6.1
Summary of Cases.

Case kf Initial Re Final Re [lull Re¢

1 1 28.2 39.9 1.00 2.2

2 4 28.0 39.6 0.85 15

3 6 28.1 39.7 0.85 34

Ref. [12] * * * * 43

sky inodel in tile present investigation. In those cases where the results of the LES with tile two models do

deviate the deviation is on the order of the noise in the signal and is often in the wrong direction, anyway.

We consequently conclude that tile discret)ancies between tile DNS and tile Smagorinsky LES ohserved in

the present calculations are not the result of history effects, at least insofar as history effects are represented

by the plane-averaged history-integral model.

This second conclusion is in nmrked contrast to that indicated by the results of the accelerated plane

chamml flow sinmlations of Nwafor and Woodruff [6]. There, too, LES with the Smagorinsky and the

plane-averaged history-integral models were compared with DNS for an impulsively-disturbed flow. Time-

histories of global quantities contributing to the energy balance of the flow were examined (t)roduction and

dissit)ation ), as well _ the time history of the wall shear stress. The simulations showed that the history-

integral model significantly improved the LES predictions for the l)roduction and the dissipation in the initial

stage of the response to the disturbance and qualitatively iml)roved some aspects of the wall shear stress

predictions.

In light of all this, it would be desirable to characterize as t)recisely as possible the differences between

the three cases of the present investigation which lead to the increasing discret)ancy t)etween the LES and

the DNS, as well as the differences between the present flow and the plane chamml flow of [6] which cause

the simulations of one to be improved by the history-integral model but not those of the other.

Other than the increasing discrepancy between the LES and DNS as the wave number of the forcing

increases, the most obvious difference between the results of the three cases is the relative magnitude of the

resolved and subgrid portions of the dissipation. These two quantities nmy be regarded as characteristic of

the magnitudes of the viscous and Reynolds-stress terms in the. filtered-averaged equations and so their ratio

is likely to he an important non-dimensional parameter describing the interplay t)etween the resolved and

sub-grid dynanfics. The ratio of local values of the sub-grid to the resolved dissipation is

(6.1) e_-ZY= (Cs"_)2 (S'u"Sm")l/2 SijSiJ _- C'2'¢A (_-'_S"*"/-_Smn)l/2

t:R lJSijSij 1]

A characteristic value of this ratio may be formed with a characteristic strain rate So

., A • ASo
(6.2) c;--.

l]

It may clearly be viewed as a Reynolds numl)er based on the grid size A and the velocity AS0. This last

velocity scale may be regarded as a characteristic velocity difference induced I)y the shear for neighboring

points on tim grid. We will consequently define Re, -- _S0/s_ and exanfine the success of this l)arameter in

predicting the behavior of the simulations. (The Smagorinsky constant c_ has t)een dropped; it is irrelevant

to our purpose of comparing the relative magnitudes between cases.)

Let us assume that the magnitude of the shear in the flows studied here may l)e characterized I)y the

magnitude of the shear of the (plane-a.veraged) mean-velocity profile. Then we may take So = kf[[_lt,

14



where [lfi][ is the mean peak value of the x-component of velocity in the initial turbulent state, and so find

that in the three cases of the present investigation Re, has, just |)('fore the instantaneous change in forcing

amplitude, the values 2.2, 15 and 34, respectively. (See Table 6.1) Correlating these values with the results

described in the previous section, we see that smaller (O(1)) values of Re_ seem to correspond to fairly good

agreement between the LES and DNS, no measurable difference between the LES's with the history-integral

model and with the SInagorinsky model with Ch and much more dissipation in the resolved scales than in

the sub-grid scales. Intermediate wdues of Rc_ on the order of a dozen or so seem to eorresl)ond to larger

discrepancies between LES and DNS and the resolved dissipation exceeds the sub-grid dissit}ation by an order

of magnitude. Finally, values of Be, on the order of 30 or 40 seem to correspond to large deviations between

LES and DNS and to a sub-grid dissipation that is commensurate with the dissipation of the resolved scales.

An a(l{titiolml data l)oint comes fl'om the channel-flow computations of Nwafor and Woodruff [6]; using

the shear at the wall as the characteristic value of the shear, one finds that Re, at the initial state has the

value 43. The discreI}ancy betwe{m the DNS and the Smagorinsky LES, as well as the differences between the

Smagorinsky and plane-averaged history-integral model LES's, are consistent with the conclusions drawn in

the previous paragrat)h for simulations with mo{lerate values of Re,. The differene(, between these (']mnnel-

flow results and the results of the t)resent study, of course, is that the now model improved the LES results

in the channel-flow simulations. No such improvement oe('ured in the present investigation.

The Reynolds number Re, thus seems to 1)rovide some indication of whether a large-eddy simulation

using a steady-state model like the Smagorinsky model will faithfidly reproduce at least the global (tuantities

in a non-equilibrium turtmlent flow. It does not, however, hel t} to explain when the history-int(,gral mo{lel

emt)loyed her(, will ()fret" an imI}rovement fi)r an LES calculation.
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